
CIRED 2021 Conference 20– 23 September 2021

Paper 0638

WORKFLOW FOR TRAINING AND SERVING DEEP
LEARNING MODELS FOR IMAGE CLASSIFICATION

AND OBJECT DETECTION - APPLICATION TO
FAULT DETECTION ON ELECTRIC POLES

Christopher Coello1* , Rafael Sanchez2, Sindre de Lange2, Joachim Halvorsen2, Marco
Bertani-Økland2, Viktor Myrvang1, Ståle Heitmann1

1Elvia AS, Hamar, Norway
2Computas AS, Oslo, Norway
* christopher.coello@elvia.no

Keywords: DEEP LEARNING, REST API, FAULT DETECTION

Abstract

This work presents the development of a workflow that allows for training, testing and serving deep learning models that can
use any image coming from the image repository and can enrich these images with metadata derived from the results provided
by the deep learning (DL) vision models. Using this workflow, an electric pole image classification model and a missing top
cap object detection model were trained and served on millions on helicopter inspection images. In addition to obtaining very
accurate models, we observe that such a modular workflow have reduced both the time from idea to prototype and the time from
prototype to product.

1 Introduction

As Norway’s largest distribution system operator (DSO), Elvia
carries out daily a wide range of activities to operate, maintain,
document and expand the electric grid. Some of these activi-
ties require picture documentation, for situation analysis and
decision support. A non-exhaustive list of activities are: the
overhead line inspection using aerial photography carried out
using helicopter; documentation of installation of smart meters
by standardised photography of the asset and the electric cabi-
net; validation of cable installation between a junction box and
a house by submission of a defined number of standard pictures
[1].
Historically, those different activities have been carried out by
different divisions of the company, which have stored and pro-
cessed these images in their respective storage and application
systems. Consequently, the use of these images was exclusively
possible within the system operating the task related to the
image content.
An internal initiative was set up in March 2020 in order to
set up a new IT ecosystem that had the objective to handle all
images taken and/or processed by the different activities of the
company. Interacting with this new IT ecosystem, the authors
of this study developed a workflow that allows for training, test-
ing and serving deep learning models that can use any image
coming from the image repository and can enrich these images
with metadata derived from the results provided by the deep
learning (DL) vision models.
In this paper, Section 2 will present the different modules of

the IT image ecosystem, Section 3 will present how this mod-
ules are used to achieve training and serving of DL models,
Section 4 presents two use-cases that followed such work-
flow, while Section 5 will present the results obtained for those
two use-cases in terms of model performance and easiness of
implementation.

2 Methodology

A schematic of the overall IT architecture of the modules and
workflows is shown in Figure 1. The three main components
used for executing the task of training and serving DL models
are: the louvre-db and its different modules/APIs, the ai-vision-
api and the Azure Custom Vision service. The three components
are described below in more detail.

2.1 louvre-db

The louvre-db ecosystem is a system for storage and distribu-
tion of images. It has been developed following a microservice-
based architecture. The details of the architecture will not
be presented, but its main objective is to ingest, process and
make available images from/to all systems across the com-
pany. Within this ecosystem, there are three components that
are important in order to facilitate the DL workflow which
are the focus of this paper: ImageAPI, PluginHandler and
ImageEnhanceAPI.

2.1.1 ImageAPI: The ImageAPI exposes the metadata database
and allows the users to run queries against it. The metadata

1



CIRED 2021 Conference 20– 23 September 2021

Paper 0638

Fig. 1. Overall architecture implementation for the training (left) and the serving (right) of DL models.

database contains URLs to the images present in the storage
system, together with all other possible metadata that are con-
nected to the images, for example EXIF tags, GeoLocation
tags, domain-related tags, and more. The interaction with the
Azure Search motor is done using GraphQL query language.
As part of the image ingestion process, every image is resized
to (and made available in) different variants: original, stan-
dard and thumbnail; each of which can be queried individually.
The response to a query for a given image will typically con-
tain the unique resource identifier (sas-uri) for each of its
aforementioned variants, together with other metadata.

2.1.2 PluginHandler: The PluginHandler component is respon-
sible for communicating with the different plugins, which in
turn perform operations related to images within louvre-db.
PluginHandler triggers a plugin by sending it webhooks when
events happen. Examples of events are the uploading of new
images tagged with a specific image category, or the change of
a metadata field in the metadata database.
Each plugin is defined by a combination of a unique name, an
event trigger, a filter and a URL to the endpoint that should be
triggered. Both the event trigger and the filter can be a combina-
tion of several individual event triggers (or filters, respectively).
Anybody with access can define plugins on their own.
An interesting feature is the possibility to introduce dependen-
cies between any two plugins, e.g. the order in which they run.
This can be achieved by modifying a metadata entry as part of

running the first plugin, and then defining changes in that same
metadata entry as the event trigger for the second plugin.

2.1.3 ImageEnhanceAPI: ImageEnhanceAPI simply takes
care of changes in the metadata as a result of the processing
done by the plugins. It updates the metadata of a given image,
keeping in records the original metadata before modification
for possible retrieving at a later stage.

2.2 ai-vision-api

ai-vision-api has the objective to coordinate the communica-
tion between the images and metadata present in louvre-db and
the DL models. It was designed to be used when training as
well as serving the DL models.
ai-vision-api is both a Python package and a Flask-based web
application, and it can be customised based on the requirements
of the models it serves. In terms of figure 1 and paragraph 2.1,
ai-vision-api functions as a plugin.
ai-vision-api was developed paying special attention to decou-
pling the DL framework-specific modules from the rest of the
code. By doing this, shifting between DL frameworks would
not only be possible, but straightforward.
Development, deployment and operation of ai-vision-api is
made following DevOps principles. ai-vision-api instances run
as pods in a Kubernetes cluster on Microsoft Azure. The secure
operation of ai-vision-api involves the retrieval of secrets from
Elvia’s secret management service.
The DL model training (paragraph 3.1) and serving (paragraph

2



CIRED 2021 Conference 20– 23 September 2021

Paper 0638

3.2) workflows will explain in detail how the API is used to
achieve these two steps.

2.3 Custom Vision

The DL framework used is the Custom Vision service ([2])
from Microsoft Azure Cognitive Services. This deep learn-
ing service allows to train, store and serve DL models for
doing prediction on images. The user of the service can choose
between classification (image -> label) and object detection
(image -> bounding box) architectures. ai-vision-api interacts
with Custom Vision through its Python SDK, more specifically
with the training (and its CustomVisionTrainingClient class)
and prediction (and its CustomVisionPredictionClient class)
clients.

3 Deep Learning Workflows

By using the modules presented previously, the objective is to
set up reproducible and easy-to-use workflows to train, validate
and serve deep-learning models. In the next two sections, the
workflow for training/validating new models and the workflow
for serving trained models in production are described.

3.1 Training DL models

Training a DL classification (resp. object detection) model
requires: a dataset containing a set of images with the corre-
sponding label (resp. bounding box) of the image; a DL model
architecture; and a machine to train the model (i.e. change the
weights of the model) using the data in the dataset.

3.1.1 DL model: When using the Custom Vision service, the
architecture and initial weights are predefined. For multilabel
or multiclass classification, the user can choose among differ-
ent domains (General, General A1, Food, Landmarks, Retail)
when setting up and training a model. These domains are, we
believe, an abstraction covering both the model architecture
and the initial weights of the model (transfer learning). For
object detection, the domains are General, General A1, Logo
and Products on Shelves. In addition, small-size architectures
can be chosen (Compact domains), which are intended to be
exported and executed on mobile devices.

3.1.2 Dataset: Because the DL architecture is fixed, one of the
only means to improve the quality of predictions is to improve
the training dataset. Jupyter Notebooks (JNs) were extensively
used for the training workflow because they allow flexibility
and customisation. On a single platform, tasks such as visual-
izing images, plotting validation metrics and interacting with
APIs are all feasible.
Training datasets are stored in GitHub as CSV files, and a set
of JNs allows to incrementally improve these datasets follow-
ing the schematic of Figure 2. Dataset improvement can take
several forms:

• increasing the number of images in the dataset,
• defining strict rules for each labelled category,

Fig. 2 Schematic of the incremental improvement of the
dataset used to train the model. Green rectangles: process
executed using Jupyter Notebooks, brown diamonds: artefacts.

• defining fine granularity in the labels to allow possible
grouping of classes,

• cleaning errors in the labelling

For versioning and reproducibility purposes, each new iter-
ation of the training dataset is named with a unique, short
hash value generated based on its contents. Once the training
dataset is sufficiently optimised, a new model version is rolled
out in Custom Vision via its training client. The ai-vision-api
prediction endpoints were designed to search for and use a
particular model name in Custom Vision, therefore allowing
model updates (i.e. re-training with more data) without having
to update the API itself.

3.2 Serving

When a new image satisfying the rules of a given model plu-
gin is uploaded to louvre-db, PluginHandler sends a webhook
to the corresponding ai-vision-api model endpoint, containing
the unique image identifier of the new image. Based on this
information, ai-vision-api first queries ImageAPI to obtain the
sas-uri of the new image’s variant most suitable for predic-
tion. It then calls the Custom Vision prediction service and
provides it with the sas-uri together with additional informa-
tion (i.e which model to use) via the Custom Vision prediction
client. Custom Vision fetches the actual image file and finally
sends back prediction results. After a validity check on the
results, ai-vision-api updates the metadata linked to that image
and model with the prediction results; this is done by sending a
metadata update request to ImageEnhanceAPI.

3.2.1 Scaling: In order for the prediction endpoints to cope
with traffic spikes and request queues, ai-vision-api imple-
ments Waitress [4]. Waitress is a Python WSGI server that can

3



CIRED 2021 Conference 20– 23 September 2021

Paper 0638

Fig. 3 Example of aerial helicopter images. On the bottom
images, the bounding box of the "missing whole top cap" (red)
and the "whole top cap" (blue) are visible.

handle requests in an asynchronous, multi-threaded manner.
The default number of threads is four. In addition to ai-vision-
api supporting multi-threading, the number of ai-vision-api
instances will get adjusted automatically in Kubernetes, e.g.
new instances will be spun up when the load is high.

4 Experiments

While developing the infrastructure around the ai-vision-api,
one classification and one object-detection use-case were used
to test the workflows. These use-cases were selected in col-
laboration with domain-experts using aerial helicopter images.
Previous efforts (i.e [3]) has shown the feasibility of the object-
detection use-case. Once trained, both models were configured
as plugin within the louvre-db with different triggers.

4.1 PoleCat: detecting pole type

The objective is to detect the type of electric pole present
in aerial helicopter images (Figure 3). Three classes of poles
were targeted, as these covers almost the entirety of the poles
in Elvia’s grid (label names are given in parenthesis): TREE
(TRE), STEEL (STÅL) and CONCRETE (BETONG) poles. A
fourth class (MULTIPLE) that classified images with several
poles was additionally tested, but not used in the final model.
The class distribution is unbalanced as around 96% poles are
of class TREE.
Four experiments were done with balanced (all classes with
roughly 500 images) and unbalanced (TREE classes with 4000,
all other classes with 500 images) datasets, with and without
the MULTIPLE class. Based on validation metrics (see para-
graph 4.3), the final dataset used three unbalanced classes:

TREE (4161), STEEL (467), CONCRETE (596). A semi-
automatic process (see Figure 2) is in place to gradually add
new images in the two classes with low count.
The multiclass classification model with General A1 domain
was used in Custom Vision client. The output of the model is
a probability level for each class which must be transformed
into one label. For a given image, the label for the class with
the highest probability over the predefined threshold is the
predicted label. The probability threshold is the only hyperpa-
rameter to be chosen for this model.
This plugin triggers when a new image with tag "helicopter
inspection" is uploaded to the louvre-db.

4.2 TopCap Finder: finding missing top-cap

The objective is to detect and place a bounding box around the
missing top caps. An example of missing top cap is shown in
the bottom image of Figure 3. Based on the workflow presented
in paragraph 3.1, the initial rules for labeling considered 10 dif-
ferent tags with a fine level of granularity: whole visible black
top cap, whole visible white top cap, partially visible white top
cap, partially missing top cap, whole missing top cap, etc...
This granularity was based on the color, angle of the camera
that allowed or not to see the whole top cap, and possible cables
on overlaying the object of interest. After a significant number
of experiments where categories were iteratively refined and
grouped in numerous ways, the final balanced dataset used to
train the published model contained two classes of bounding
boxes: ’whole missing top cap’ (1188) and ’whole top cap’
(1182).
The object-detection with General A1 domain was used in Cus-
tom Vision client. In addition to the probability threshold, the
amount of overlap between the predicted bounding box and the
actual bounding box quantifies the accuracy of the positioning
of the predicted bounding box. Whereas the probability thresh-
old is of importance when predicting new bounding boxes, the
overlap threshold is a hyperparameter that is only needed for
obtaining validation metric.
This plugin triggers when the metadata corresponding to Pole-
Cat changed and the prediction result from PoleCat model was
of class TREE.

4.3 Metrics

The Custom Vision client returns the K-fold cross-validation
precision and recall metrics. We remind that precision quan-
tifies the fraction of predicted classifications that were correct
whereas recall is a fraction of classes that were correctly pre-
dicted. The F1 score is the harmonic mean of the precision and
recall:

F1 = 2× precision× recall

precision+ recall
(1)

5 Results

The prediction results for the classification and object detection
use-cases are briefly presented below, together with a general
discussion about the API and its re-usability.

4



CIRED 2021 Conference 20– 23 September 2021

Paper 0638

Fig. 4 Precision/recall (left) and F1 score (right) graphs for
varying thresholds for all the labels and per label.

Fig. 5 Precision/recall (left) and F1 score (right) graphs for
varying thresholds and varying overlap thresholds for all the
labels and per label.

5.1 Detecting poles

Figure 4 shows the precision/recall (left) and F1 score (right)
curves for the classification use-case (PoleCat). There is one
curve for all labels together (ALL) and one curve per class.

5.2 Detecting missing top cap

Figure 5 shows the precision/recall (left) and F1 score (right)
curves for the object detection use-case (TopCap Finder). The
curves are estimated for the class ’whole missing top cap’,
which is in this particular use case the only one we are inter-
ested in. Interestingly, when removing the class ’whole visible
top cap’, the results were worse (not shown) than with two
classes. We believe that’s because both objects (missing top
cap and a visible top cap) are co-located (always on top of a
tree mast), and the algorithm manages to differentiate better
between them when trained with two classes instead of only
one.

5.3 Accelerating innovation and re-usability

The development of such workflows and APIs directly
decreases the time from ideas to prototype to most-valuable-
product (MVP) to product. In the initial phase of prototype
testing, the training workflow allows to almost solely focus on
building a training dataset, which can be done by using JNs but
in fine could be done by the domain experts themselves. Only
minor changes are needed in order to include a first prototype
directly against the production base and test the model at scale.
The experience acquired when implementing these use case

allowed us to set up some standard processes as the one shown
in Figure 2. Each of the processes needed to obtain a solid and
robust prototype are documented and executed using JNs. A
clear advantage of using this JNs approach is that the customi-
sation and re-usability from use-case to use-case is made very
simple (for example, change the GraphQL query for selecting
the images).
Another beneficial consequence of the ai-vision-api is the
transfer from prototype in the development environment to a
product in production is accelerated and simplified. Once the
dataset is finalized, the model is retrained in the production
environment with the same dataset (ad defined by its CSV
source in GitHub).
Finally, the image ecosystem allows for images to be re-used
outside the original purpose for which the image was taken.
The classification use-case presented in paragraph 4.1 is a good
example of such re-use of image: while the original aerial
images were taken to detect failures in the overhead lines, the
images could be easily re-used to increase the quality of our
grid documentation. Indeed, once the pole type prediction are
compared with the existing pole type in our NIS system: if a
difference exists, then a manual process could be initiated to
check this difference and either adjust the documentation or
give feedback to the model that it misclassified a pole type.

6 Conclusion

In this paper, we presented the IT modules and workflows used
in Elvia to train and serve DL vision models. In addition to
the good prediction levels obtain in one classification and one
object-detection use-case, we clearly see the benefit of this
ecosystem in the ability to bridge the gap of innovation from
idea to product and to reuse images outside the original purpose
for which the image was taken.

References

[1] ‘Krav til kabelrør - Eidsiva’, accessed 24 February
2021, https://www.eidsiva.no/eidsivanett.no/graving-og-
trefelling/stromoppkobling/

[2] ‘Azure Custom Vision’, accessed 24 February 2021,
https://azure.microsoft.com/en-us/services/cognitive-
services/custom-vision-service/

[3] Nguyen, V.N., Jenssen, R., Roverso, D.: ‘Automatic
autonomous vision-based power line inspection: A
review of current status and the potential role of deep
learning’, Electrical Power and Energy Systems, 2018,
99, pp 107-120

[4] ‘Waitress‘, accessed 26 February 2021,
https://docs.pylonsproject.org/projects/waitress/en/stable/

[5] ‘Flask‘, accessed 26 February 2021,
https://palletsprojects.com/p/flask/

5


