Using ML to predict regional renewable production

Gabriele Martinelli, Senior Analyst, European Power Christopher Coello, Senior Analyst, European Power

joint work with Hilde Nyhus and Jørgen Hansen

7th Electricity Price Forecasting & Market Workshop, Jan 25, 2019

REFINITIV

Agenda

Wind and solar power output modeling

- Current approach using actual weather data
- Modelling using weather forecasts
- Advanced methodologies (ML)

• Dimensionality reduction and Feature selection

- Selection on spatial grid
- Selection by modeling (sequential)
- Selection by dimensionality reduction (PCA)

Results / case studies

- Wind power output in Germany
- Wind power output in Nordics
- Solar power output in Spain, PV and thermal and PV in Germany

REFINITI

• Conclusions

Improved RES (renewable power output) models are crucial for better short term price forecasting (Intraday / DA / WA)

• **Current offering** from **Refinitiv** in Commodities \rightarrow Power (Continental and Nordics):

1) Supply (hydro, wind, solar) and demand forecasts for (all) countries in Europe and price areas + AUS, US, Turkey, Brasil,...

2) 16+ weather runs per day (ECo and ECe, GFSo and GFSe + AROME / DWD / IKONeu,...). All data presented in EIKON and via feed. Historical data through Download Manager or PointConnect solutions

- 3) Availabilities and actual production figures (aggregated or per plant)
- 4) Actual prices and price forecasts for most countries in Nordics + CWE + ... using a European-wide fundamental model
- 5) DayAhead and WeekAhead analysis updated every day, longer term analysis (mid-term) updated once or twice a week.
- 6) Weather maps (temp, precip, wind,...) and comment from meteorologist twice a day.
- 7) Bid-offer curves and sensitivities

Wind and solar power output modeling

Current approach

• Physical model

$$\min_{\mathbf{w},\mu,\sigma} \sum_{h=01}^{24} \sum_{d=1}^{nd} \left(p_{h,d} - \sum_{st=1}^{nst} \left(w_{st} \cdot \frac{1}{1 + e^{-\frac{x_{h,d,st} - \mu_{h,st}}{\sigma_{h,st}}}} \right) \right)^2$$

where:

- $\boldsymbol{\omega}$ are the weights associated to each station
- p is the wind power production
- x is the wind speed
- μ and σ are the parameters associated to the sigmoid function (per hour)

REFINITIV

7

5 Using machine learning to predict renewable production

Current approach

Physical model with Fourier seasonality correction

$$\min_{\mathbf{w}_{f,st}} \sum_{d=1}^{nd} \sum_{h=01}^{24} \left(lf_{h,d} - \sum_{f=1}^{nf} \sum_{st=1}^{nst} w_{f,st} f_{f,st} \underbrace{1}_{1+e^{-\frac{x_{h,d,st}-\mu}{\sigma}}} \right)^2$$

where:

- $\boldsymbol{\omega}$ are the weights associated to each station and fourier basis
- If is the load factor
- x is the wind speed

• μ and σ are the parameters associated to the sigmoid function (fixed, to ensure the linearity of the problem)

• f are the Fourier basis (see right picture) used for projection

Current approach

• Problem with actual vs forecast data → Filtering

Modeling with weather forecast

Size ECo EU grid: • ~ 1 grid point / 7km (EW) • ~ 1 grid point / 14km (NS)

→ 1000 grid points for DK1
→ 4200 points for FIN
→ 4600 points for DEU

1 point per hour \rightarrow 100M points per variable (FIN)

 \rightarrow ~1B points per country assuming 10 weather variables per calibration run.

REFINITIV

Modeling with weather forecast

Modeling with weather forecast

7

Theory

An ensemble of decision trees trained by bootstrap sampling and random feature selection

Implementation

MATLAB

Machine Learning and Statistics Toolbox Feature selection $\rightarrow \sim 10$ minutes with sequential algorithm Training with optimisation $\rightarrow 1$ to 2 hours Prediction \rightarrow ms to s

Optimization hyperparamters

- Minimum number of points per leaf
- Number of decision features per split
- Maximum number of splits

Random forests for wind power output estimation

INPUTS

- **Forecast** : ECoEU (denser grid) + date variables (Fourier)
- Variables : 100m U and V components (possibly Temp)
- **Resolution** : hourly data
- **Model output** : 00 and 12 (plus 06z and 18z for the last 3 months)

REFINITIV

7

Random forests for wind power output estimation

INPUTS

×10⁴ 0.8 Forecast : ECoEU (denser grid) + date variables (Fourier) 0.5 100m U and V components (possibly Temp) 0.6 Variables : **Resolution** : hourly data 0.4 1 Model output : 00 and 12 (plus 06z and 18z fo rthe last 3 months) 0.2 1.5 0 **Pre-processing**: -0.2 Assemble a timeserie by concatenating the first 12/6 hours of each • 2 -0.4 model output -0.6 2.5 06 00 06 12 18 00 -0.8 -1 10 25 15 20 5 REFINITIV

Fourier basis

Random forests for wind power output estimation

INPUTS

Forecast :ECoEU (denser grid) + date variables (Fourier)Variables :100m U and V components (possibly Temp)Resolution :hourly data

Model output: 00 and 12 (plus 06z and 18z for the last 3 months)

Pre-processing:

- Assemble a timeserie by concatenating the first 12/6 hours of each model output
- Change the base of the representation from the (U,V) components to the polar coordinates (WS, ρ)

REFINITIV

INPUTS

Forecast : ECoEU (denser grid) + date variables (Fourier)

Variables : 100m U and V components (possibly Temp)

Resolution : hourly data

Model output: 00 and 12 (plus 06z and 18z for the last 3 months)

Pre-processing:

- Assemble a timeserie by concatenating the first 12/6 hours of each model output
- Change the base of the representation from the (U,V) components to the polar coordinates (WS,ρ)

OUTPUTS

Load factor : Hourly production divided by the installed capacity

REFINITI

Solar power output modeling

$$SP(t) = Cap(t) * \sum_{st=1}^{nst} \omega_{st} * f(\alpha_{st}, \theta_{st}, SR_{st}, t) * \eta_{st}(T_{st}, t)$$
where:
• SP(t) = solar production at time t
• ω are the weights associated to each station/location
• Cap(t) is the capacity of the region at time t
• SR is the solar radiation in W per square meter

- η is the efficiency of the location, which is a function of the solar farm design and of the temperature at time t

Sincident

Shorizontal

REFINITIV

Solar power output modeling: limitations for thermal component

$$SP(t) = Cap(t) * \sum_{st=1}^{nst} \omega_{st} * f(\alpha_{st}, \theta_{st}, SR_{st}, t) * \eta_{st}(T_{st}, t)$$

- *f* is based on theoretical shape that forces zero production at night.
- No easy extension to Spanish thermal production: output during night in summer, but not in winter.

Solar power output modeling with random forests

INPUTS

Forecast : GFSo

Variables :

- Solar radiation
- Temperature
- Cloud cover
- "Theoretical shape" (to assign sunrise and sunset)

Resolution : 3h data

Model output : 00 , 06, 12 and 18.

Pre-processing:

18

Assemble a timeserie by concatenating the first 12 hours of each model output

Using machine learning to predict renewable production

OUTPUTS

Load factor :

Hourly production divided by the installed capacity

Solar power output modeling

INPUTS

Solar radiation

 \mathbf{z}

Solar power output modeling with random forests

INPUTS

20

Theoretical shape

Dimensionality reduction and feature selection

Selection on the spatial grid

• Grid subsampling

REFINITIV

τ

Selection on the spatial grid

• Randomized

Karte ge

Selection by modelling

- Idea: Perform a "pre-calibration" with a simplified function in a sequential (or joint) way in order to determine the best features
- Selection by modelling requires:
 - A search strategy to select candidate subsets
 - An objective function to evaluate these candidates

Selection by modeling

• Idea: Perform a "pre-calibration" with a simplified function in a sequential (or joint) way in order to determine the best features

• Selection by modelling requires:

- A search strategy to select candidate subsets
- An objective function to evaluate these candidates

Search strategy

– Exhaustive evaluation of feature subsets involves an unfeasible # of combinations (even for moderate # of N total features and M features to select), so a search procedure is needed

- We have chosen a sequential forward strategy (several other choices are possible...)

Objective function

- The objective function evaluates candidate subsets and returns a measure of their "goodness", a feedback signal used by the search strategy to select new candidates.
- A simplified version of random forest can be used, otherwise some clever regression method

Selection by modelling

Ζ

Selection by modelling

PCA and other variable reduction methods

Case studies and results

Random forests

Data preparation

7

Results DEU wind

%	Synthetic	Current Day forecast (EC00)	Day ahead forecast (EC00)
Physical model, actual calibration, Fourier expansion	15.0	15.7	17.0
Forecast calibration, 10m height wind	13.0	Х	15.6
Forecast calibration, 100m height wind	9.6	Х	13.7
ML (Random forest method), 100m height wind	6.2	6.4	10.7
TSO fcst (first coming at 17:00, cont. updating)	3.05 (*)	Х	8.1

 \mathbf{z}

Results DEU wind

%	Calib	Valid	OOS
EON	5.7	7.5	7.8
ENBW	11.2	12.7	13.2
Vattenfall	6.6	7.5	9.6
RWE	7.4	8.2	8.9
DEU	4.9	-	6.2

Results NRD – best setting

7

33 Using machine learning to predict renewable production

Results NRD – best setting

Results NRD, comparison synthetic series on a recent period

35 Using machine learning to predict renewable production

Results NRD feature importance

Results NRD, feature selection using PCA

DK1

Results DEU solar (PV)

Aggregated

%	Calib	Valid	OOS	Curr synth
EON	9.9	-	10.2	11.9
ENBW	11.0	-	11.2	13.4
Vattenfall	10.3	-	12.1	15.4
RWE	12.1	-	18.1	17.2
DEU	8.3	-	8.6	8.2

7

Results DEU solar – feature importance

REFINITIV

τ

Results ESP PV solar: input features

Results ESP solar

Aggregated

%	Calib	Valid	OOS	Curr synth
PV	6.7	8.0	12.4	13.3
Thermal	15.2	18.9	28.3	Х
ESP	8.9	12.6	15.2	

Results ESP solar

ि

42 Edit presentation title on Slide Master using Insert > Header & Footer

Other ML methods tested

Neural Networks

A layered network of basic functions able to represent the complex relationship between input and output

Similar results on fundamental prediction, larger out-ofsample error wrt calibration error (overfitting)

SVM

A support-vector machine constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which can be used for classification, regression or other tasks like outliers detection.

In general, in our experience, Random Forests tend to perform better than SVM for **regression** problems.

Naïve explanation Random Forest is intrinsically suited for multiclass problems, while SVM is intrinsically two-class

Truth Random Forest works well with a mixture of numerical and categorical features. When features are on the various scales, it is also fine.

Conclusions

Another project where we are testing ML techniques:

Intraday balancing volume forecasts using LSTM (long short-term memory) NN

Conclusions

Another project where we are testing ML techniques:

Intraday balancing volume forecasts using LSTM (long short-term memory) NN

Conclusions

Another project where we are testing ML techniques:

Intraday balancing volume forecasts using LSTM (long short-term memory) NN

Lessons learned:

- Ability of handling big weather data in ML models depends on having good routines for:
 - Data processing and storing
 - Variable selection (dimensionality reduction)
- Sensible improvemements in OOS (out-of-sample) error thanks to calibration on forecast grid and smart data handling
- Fine tuning of hyperparameters to avoid overfitting
- Harder to beat current stack based or bid-offer based models in pure short term price modelling

gabriele.martinelli@refinitiv.com

